问答
当前位置:首页 问答 高中 数学 递降归纳法数学归纳法并不是只得递降归纳法数学归纳法并不是只能应用于形如“对任意的n”这样的命题.对于形如“对任意的n=0,1,2,...,m”这样的命题,如果对一般的n比较复杂,而n=m比较容易
递降归纳法数学归纳法并不是只得递降归纳法数学归纳法并不是只能应用于形如“对任意的n”这样的命题.对于形如“对任意的n=0,1,2,...,m”这样的命题,如果对一般的n比较复杂,而n=m比较容易
更新时间:2025-04-07 23:12:33 专题:数学
问题描述:

递降归纳法数学归纳法并不是只得

递降归纳法

数学归纳法并不是只能应用于形如“对任意的n”这样的命题.对于形如“对任意的n=0,1,2,...,m”这样的命题,如果对一般的n比较复杂,而n=m比较容易验证,并且我们可以实现从k到k-1的递推,k=1,...,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,...,m,原命题均成立.如果命题P(n)在n=1,2,3,.,t时成立,并且对于任意自然数k,由P(k),P(k+1),P(k+2),.,P(k+t-1)成立,其中t是一个常量,那么P(n)对于一切自然数都成立.

请问这段话不是从K到k-1的递推吗后来为什么说由P(k),P(k+1),P(k+2),.,P(k+t-1)成立,其中t是一个常量,那么P(n)对于一切自然数都成立.我还是没明白这种归纳法

申娟回答:   这种用的少,一般步骤就是先证明对于一个任意大的数k(比如2的m次方),命题都成立,然后倒推,由n=k成立推出n=k-1成立,从而得证,   其实原理很简单,对于任意一个数a,肯定存在一个数m,使得a小于2的m次方,然后逐步倒,肯定能倒到a,问题就解决了

数学推荐

热门数学推荐