设代数方程a0-a1x^2+a2x^4-···+(-1)anx^2n=0有2n个不同的根±x1,±x2,±x3,···,±xn,则a0-a1x^2+a2x^4-···+(-1)anx^2n=ao(1-x^2/x1^2)(1-x^2/x2^2)···(1-x^2/xn^2),比较两边x^2的系数得a1=(用a0,x1,x2,···,xn表示)
问题描述:
设代数方程a0-a1x^2+a2x^4-···+(-1)anx^2n=0有2n个不同的根±x1,±x2,±x3,···,±xn,则a0-a1x^2+a2x^4-···+(-1)anx^2n=ao(1-x^2/x1^2)(1-x^2/x2^2)···(1-x^2/xn^2),比较两边x^2的系数得a1=
(用a0,x1,x2,···,xn表示)