问答
当前位置:首页 问答 小学 数学 设A是n阶实对称矩阵,证明:(1)A的特征值全是实数;(2)若A为正定矩阵,则A^2也是正定矩阵
设A是n阶实对称矩阵,证明:(1)A的特征值全是实数;(2)若A为正定矩阵,则A^2也是正定矩阵
更新时间:2025-06-01 12:12:51 专题:数学
问题描述:

设A是n阶实对称矩阵,证明:(1)A的特征值全是实数;(2)若A为正定矩阵,则A^2也是正定矩阵

李双艳回答:   (1)设λ是A在复数域内的一个特征值,X是属于λ的特征向量(未必是实向量),即有AX=λX.用B*表示B的复共轭的转置,由A是实对称矩阵,有A*=A.考虑1×1矩阵X*AX,可知(X*AX)*=X*A*(X*)*=X*AX,即X*AX唯一的矩阵元是实...

数学推荐

热门数学推荐