问答
当前位置:首页 问答 初中 数学 初二数学《多边形的内角和与外角和》1.一个n边形的内角和与一个外角之和为680°,求n及此外角的度数2.一个正多边形的每个内角都为钝角,则这样的正多边形有多少个?边数最少的一个是几边
初二数学《多边形的内角和与外角和》1.一个n边形的内角和与一个外角之和为680°,求n及此外角的度数2.一个正多边形的每个内角都为钝角,则这样的正多边形有多少个?边数最少的一个是几边
更新时间:2025-04-04 23:32:08 专题:数学
问题描述:

初二数学《多边形的内角和与外角和》

1.一个n边形的内角和与一个外角之和为680°,求n及此外角的度数

2.一个正多边形的每个内角都为钝角,则这样的正多边形有多少个?边数最少的一个是几边形?

汤学明回答:   1、因为n边形的内角和=(n-2)×180°,(n>2且n为整数),所以可假设此外角为0°,此时680°÷180°=n-2,而n>2且n为整数,故(n-2)>0且为整数,又680°÷180°=3······140°,故假设不成立,所以n-2=3,即n=5,此外角...

数学推荐

热门数学推荐