问答
当前位置:首页 问答 高中 数学 离散数学证明题设G是一个n阶无向简单图,n是大于等于3的奇数.证明图G与它的补图G`中的奇数度顶点个数相等.
离散数学证明题设G是一个n阶无向简单图,n是大于等于3的奇数.证明图G与它的补图G`中的奇数度顶点个数相等.
更新时间:2025-04-06 15:22:47 专题:数学
问题描述:

离散数学证明题

设G是一个n阶无向简单图,n是大于等于3的奇数.证明图G与它的补图G`中的奇数度顶点个数相等.

郭金庚回答:   证:设G(V,E),G'(V,E').则E'是由n阶无向完全图的边删去E所得到的.所以对于任意结点,u在G和中的度数之和等于u在中的度数.由于n是大于等于3的奇数,从而的每个结点都是偶数度的(度),于是若在G中是奇数度结点,则它在中也是奇数度结点.故图G与它的补图中的奇数度结点个数相等.

数学推荐

热门数学推荐